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Abstract

The one-dimensional supersymmetric random Hamiltonian Hsusy = − d2

dx2 +
φ2 + φ′, where φ(x) is a Gaussian white noise of zero mean and variance g,
presents particular spectral and localization properties at low energy: a Dyson
singularity in the integrated density of states (IDoS) N(E) ∼ 1/ln2 E and
a delocalization transition related to the behavior of the Lyapunov exponent
(inverse localization length) vanishing like γ (E) ∼ 1/|ln E| as E → 0. We
study how this picture is affected by breaking supersymmetry with a scalar
random potential: H = Hsusy + V (x), where V (x) is a Gaussian white noise
of variance σ . In the limit σ � g3, a fraction of states N(0) ∼ g/ln2(g3/σ)

migrate to the negative spectrum and the Lyapunov exponent reaches a finite
value γ (0) ∼ g/ln(g3/σ) at E = 0. The exponential (Lifshits) tail of the
IDoS for E → −∞ is studied in detail and is shown to involve a competition
between the two noises φ(x) and V (x), whatever the larger is. This analysis
relies on analytic results for N(E) and γ (E) obtained by two different methods:
a stochastic method and the replica method. The problem of extreme value
statistics of eigenvalues is also considered (distribution of the nth excited-state
energy). The results are analyzed in the context of classical diffusion in a
random force field in the presence of random annihilation/creation local rates.

PACS numbers: 72.15.Rn, 73.20.Fz, 02.50.−r

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The study of spectral and localization properties of one-dimensional (1D) random
Hamiltonians has stimulated a huge activity since the pioneering works of Dyson [1], Schmidt
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[2], Frisch and Lloyd [3], Lifshits [4] and many others (one may find references to most of
the important works in the review [61] and the books [5, 7]). Because the dimension plays
an important role in localization problems [6], the strictly one-dimensional situation misses
some features of the higher dimension case (like a weak localization regime). On the other
hand, the one-dimensional case allows us to make use of powerful nonperturbative methods
and study subtle properties which are much more difficult to tackle in higher dimensions.
The random Schrödinger Hamiltonians Hscalar = − d2

dx2 + V (x), where V (x) is a random
function, have been studied in great detail [5] and their properties are rather generic under
the assumption that V (x) is correlated on a small length scale and

∫
dx〈V (x)V (0)〉 remains

finite4: exponential tail in the density of states5 at low energies (Lifshits singularity) [2, 3,
5, 9, 11–13] and decreasing Lyapunov exponent (inverse localization length) at high energy
[5, 13] γ ∝ 1/E for E → +∞. The situation can be quite different if the Hamiltonian
possesses some symmetry preserved by the introduction of the random potential. Such a
situation occurs in the case of the supersymmetric random Hamiltonian

Hsusy = − d2

dx2
+ φ(x)2 + φ′(x). (1)

This Hamiltonian has a positive spectrum, a direct consequence of the fact that it can
be factorized in the form Hsusy = Q†Q with Q = − d

dx
+ φ(x) and Q† = d

dx
+ φ(x).

Moreover, it is worth pointing out that Hsusy ≡ H+ = Q†Q and its supersymmetric partner
H− = QQ† = − d2

dx2 + φ2 −φ′ are the two components of the square of the Dirac Hamiltonian

HD = σ2i d
dx

+ σ1φ(x), where σi are Pauli matrices: H2
D = − d2

dx2 + φ2 + σ3φ
′. Therefore the

Hamiltonian (1) arises naturally when studying random Dirac Hamiltonians. Besides its own
interest for the physics of localization, this model is relevant in several physical contexts like
classical diffusion in a random force field (Sinai problem) [14–18] (see section 1.1), organic
conductors [19, 16] or spin chains (the spectrum of excitations of an antiferromagnetic spin-
chain is linear at small energies like in the free fermion model; the precise mapping of
AF spin-chain to free fermions can be achieved thanks to a Jordan–Wigner transformation)
[17, 20–24]; see the review provided in [15]. The relation to discrete models has been
discussed: the supersymmetric Hamiltonian is the continuum limit of a discrete tight-
binding Hamiltonian with off-diagonal disorder [16]. It is also the continuum limit of a
tight-binding Hamiltonian with diagonal disorder at the band center [25, 5] (this point has
been recently rediscussed in [26]). The supersymmetry is responsible for rather particular
spectral and localization properties. For the sake of concreteness, let us choose for φ(x) a
Gaussian white noise of zero mean, 〈φ(x)〉 = 0 and 〈φ(x)φ(x ′)〉 = gδ(x − x ′). In the low-
energy limit, E � g2, the integrated density of states (IDoS) presents the Dyson singularity
N(E) � 2g/ln2(g2/E) [14, 15, 20, 25], similar to the one of the spring chain with random
masses [1]. The Lyapunov exponent vanishes as γ (E) � 2g/ln(g2/E) [15, 20], indicating
a delocalization transition. This delocalization transition is supported by studying other
quantities: (i) the statistical properties of the zero mode wavefunction [27–29] indicate long-
range power-law correlations (like the Lyapunov exponent analysis, these calculations do not
account for boundary conditions). (ii) The distribution of the transmission probability through

4 Some interesting results have also been obtained in [7] in a situation where the correlation function grows at large
distance like 〈V (x)V (0)〉 ∼ |x|η with η > 0 (the case η = 1 corresponds to a Brownian motion).
5 The form of the exponential Lifshits tail depends on the details of the distribution of the random potential. Note

that the spectrum of the Hamiltonian Hscalar = − d2

dx2 + V (x) can also present power-law singularity: for a random
potential describing a weak concentration of impurities of negative weights, each trapping a localized state at energy
E0 < 0, the spectrum presents a power-law singularity near E0, with an exponent proportional to the concentration
of impurities; such a singularity is called a Halperin singularity [2, 3, 8–10]).
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a finite slab of length L at zero energy. In particular the average transmission decreases
like 1/

√
L [30], that is slower than the behavior 1/L for a quasi-1D conducting weakly

disordered wire. (iii) Time-delay distribution presents a log–normal distribution at zero energy
[30, 31]. (iv) The conductivity is found to be finite at E = 0 [32]. (v) Finally, the study
of extreme value statistics of energy levels indicates spectral correlations for E → 0 [33].
In the high-energy limit E → ∞, the localization properties are quite unusual since the
Lyapunov exponent does not vanish but reaches a finite value γ (E → ∞) � g/2. This
property is due to the singular nature of the potential φ2 + φ′ with φ a white noise. When the
potential is regularized by introducing a small but finite correlation length, it has been shown in
[16, 34] that the Lyapunov exponent decreases as γ ∝ 1/E for largest energies, as for the
random Hamiltonian Hscalar = − d2

dx2 + V (x). If the random function φ(x) possesses a finite
mean value 〈φ(x)〉 = μg, logarithmic singularities are converted into power-law singularities
[15, 25]. Extension to more general situations has been considered in [35], where spectrum
and localization have been studied for the most general random Dirac 1D Hamiltonian (random
mass, random scalar field and random gauge field); however, such a study still preserves the
(particle–hole) symmetry of the Hamiltonian (note that the distribution of the local DoS for
this model has been investigated in [36]).

The aim of the present paper is to discuss the effect of the addition of a scalar random
potential that breaks the supersymmetry,

H = − d2

dx2
+ φ(x)2 + φ′(x) + V (x) . (2)

We will mostly consider the case when the functions φ and V are two uncorrelated Gaussian
white noises with variances 〈φ(x)φ(x ′)〉 = gδ(x − x ′) and 〈V (x)V (x ′)〉 = σδ(x − x ′). The
case with a finite 〈φ(x)〉 will be studied in section 4 with the replica method. The case
of correlated Gaussian white noises φ and V will be discussed in appendix A, where it is
mapped onto the problem of uncorrelated noises. Our purpose is to study how the spectral
and localization properties of Hsusy are modified when introducing the scalar potential. A first
obvious change is that the spectrum of H is not restricted to be positive. Natural questions are
therefore: what is the number of states sent to R

− by the introduction of the potential V (x),
how their energies are distributed? How the delocalization at E → 0 for the Hamiltonian
Hsusy is affected?

The paper is organized as follows. After giving a physical motivation for our model
right hereafter, we study the spectral and localization properties of H in sections 2 and 3
respectively. Our approach relies on well-established techniques of stochastic differential
equations. In section 4, we employ the replica method in order to find other analytical
expressions for the IDoS and the Lyapunov exponent and consider the more general case of a
finite 〈φ(x)〉.

1.1. A motivation: branching random walks in a disordered environment

Let us first recall the well-known relation between the Fokker–Planck equation (FPE)
describing classical diffusion in a force field φ(x) and the Schrödinger equation for a
potential φ2 + φ′. Let us consider the Langevin equation dx(t)

dt
= 2φ(x(t)) +

√
2η(t), where

the Langevin force η(t) is a normalized white noise. This equation is related to the FPE
∂tP (x; t) = FxP (x; t), where the forward generator reads Fx = ∂2

x − 2∂xφ(x). The FPE
can be transformed into the Schrödinger equation −∂tψ(x; t) = Hsusyψ(x; t) thanks to the
nonunitary transformation P(x; t) = ψ0(x)ψ(x; t) since

ψ0(x)−1Fxψ0(x) = −Hsusy where ψ0(x) = e
∫ x dx ′φ(x ′). (3)

3
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Note that the operator transformation Fx → Hsusy is isospectral. ψ0(x) is annihilated by the
operator Q defined above: Qψ0 = 0. For a confining force field, ψ0(x) is the normalizable zero
mode of Hsusy and is related to the stationary distribution of the FPE: P(x; t → ∞) � ψ0(x)2.

In order to propose the physical interpretation of the last term of (2), we start from a discrete
formulation of the problem of diffusion-controlled reaction in a one-dimensional quenched
random potential landscape Vk . Let us consider non-interacting particles on an infinite one-
dimensional lattice with lattice spacing a. We label lattice sites by k ∈ Z, corresponding to
a position ka. We allow the local occupation number nk for site k to take arbitrary positive
integer values (bosonic particles). The transition rates between neighboring sites k and k + 1
can be obtained from the Arrhenius law,

tk+1,k = 1

a2
eVk−Vk+1 , (4)

where Vk is the potential at site k. The prefactor is chosen in order to obtain a well-defined
continuum limit a → 0+. Additionally we consider the following chemical reactions: we
allow particle replication A → mA,m � 2, with a local rate βm,k and particle annihilation
A → ∅ with a local rate γk . The reaction rates are supposed to be random quantities. Therefore,
the model describes branching random walks in a one-dimensional disordered environment,
including particle annihilation.

Let us study the particle distribution on the lattice: we denote nk the occupation of site k.
Its mean value obeys the following master equation:

dnk

dt
= tk,k+1nk+1 + tk,k−1nk−1 − (tk+1,k + tk−1,k)nk + (βk − γk)nk, (5)

where averaging · · · is taken with respect to the random dynamics defined by rates (4) (not
to be confused with averaging 〈· · ·〉 with respect to the quenched random potential Vk and
random annihilation/creation rates). We have introduced βk = ∑∞

m=1 mβm+1,k . For the
continuum limit, we introduce the density n(x = ka, t) = nk/a. As a → 0 we develop
1
a
nk±1 = n(x, t) ± a∂xn(x, t) + 1

2a2∂2
xn(x, t) + · · ·. Moreover, we introduce the force field

φ(x) via Vk − Vk+1 = aφ(x = ka) + 1
2a2φ′(x = ka) + · · · what allows us to develop the

transition rates (4) as

tk,k±1 = 1

a2
∓ φ(x)

a
− φ′(x)

2
+

φ(x)2

2
+ · · · ,

(6)

tk±1,k = 1

a2
± φ(x)

a
+

φ′(x)

2
+

φ(x)2

2
+ · · · .

We also introduce the notation γk − βk = V (x = ka) for the difference of annihilation rates
and creation rates (V (x) > 0 corresponds to annihilation and V (x) < 0 to creation). The
development yields the partial differential equation

∂n(x, t)

∂t
= ∂2n(x, t)

∂x2
− 2

∂

∂x
[φ(x)n(x, t)] − V (x)n(x, t) = −HFPn(x, t) (7)

for the average particle density, with HFP = −Fx + V (x). We will consider the case where the
random force field φ(x) and the random annihilation/creation rates V (x) are correlated over
small scale. For the large scale properties of the diffusion, the minimal model corresponds to
assume that φ(x) and V (x) are two Gaussian white noises. The mean value 〈φ(x)〉 corresponds
to the average drift of particles and 〈V (x)〉 is related to the average rate of particle annihilation
at x. We will first consider the case 〈φ(x)〉 = 0 (the case of finite drift will be discussed in
section 4). A finite average creation rate 〈V (x)〉 corresponds to a trivial global shift of the
spectrum of H, therefore we will set 〈V (x)〉 = 0.

4
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We have introduced a Fokker–Planck-like differential operator HFP which, as explained
above, may be related to the Schrödinger operator (2) thanks to the isospectral transformation
(3): ψ(x, t) = ψ0(x)n(x, t). Hence, the spectrum of H is of great interest for the diffusion
problem. In particular, if we wish to determine the density n(x, t |y, 0) with the initial condition
n(x, 0|y, 0) = δ(x − y) we may rewrite in terms of the spectrum {Eα,�α(x)} of H,

n(x, t |y, 0) = ψ0(x)

ψ0(y)

∑
α

�α(x)�α(y) e−Eαt , (8)

where ψ0(x) is the zero mode of Hsusy given above. A first quantity to consider is the average
occupation at x at time t after release of a particle at y = x at time t = 0. We can use
the translation invariance of the problem to identify the position average with averaging with
respect to disorder,

〈n(x, t |x, 0)〉 = lim
L→∞

1

L

∫ +L/2

−L/2
dx n(x, t |x, 0) =

∫ +∞

−∞
dE ρ(E) e−Et , (9)

where ρ(E) denotes the density of states of H (we have omitted averaging in the rhs thanks to
the self-averaging properties of the density of states). This relation shows that the low-energy
properties of the quantum Hamiltonian are related to large time asymptotics for the return
probability of the classical diffusion problem.

2. Spectral properties

In this section, we recall the phase formalism, the continuous version of the well-known
Dyson–Schmidt method [1, 2, 37]. A clear presentation can be found in [5, 13]. The basic
idea relates on the Sturm–Liouville theorem stating that the number of nodes of the one-
dimensional wavefunction of energy E is equal to the number of normalizable states below
E. The starting point is to convert the Sturm–Liouville problem6 into a Cauchy problem7 and
study the statistical properties of the solution of this latter problem. The next step consists to
separate the solution into an oscillating part and an envelope ψ(x;E) = ρE(x) sin θE(x). The
study of the phase θE(x) permits to analyze the spectral properties of the Hamiltonian H since
it allows us to count the number of nodes of the wavefunction. The damping of the envelope
characterizes its localization properties. Strictly speaking, ψ(x;E) is the wavefunction only if
E coincides with an eigenvalue ψ(x;En) ∝ ϕn(x), that is when the second boundary condition
is satisfied ψ(x = L;En) = 0.

2.1. Ricatti variable

It is convenient to start by introducing the ‘Ricatti’ variable z = ψ ′/ψ − φ, the Schrödinger
equation Hψ = Eψ leads to the stochastic differential equation (SDE),

d

dx
z(x) = −E − z(x)2 − 2z(x)φ(x) + V (x) (Stratonovich). (10)

Since the random functions φ and V are understood to be the white noise limits of some
physical regular noises (correlated over a finite length scale), the SDE must be understood in

6 A spectral problem is formulated as: find the solutions of Hϕ(x) = Eϕ(x) for some boundary conditions, e.g.
ϕ(0) = ϕ(L) = 0. On a finite interval, such solutions (ϕn(x), En) exist only for discrete values of the energy
E ∈ Spec(H) = {En}.
7 Solve Hψ(x; E) = Eψ(x; E) for given initial conditions, e.g. ψ(0; E) = 0 and ψ ′(0; E) = 1. Solutions
exist ∀ E.

5
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the Stratonovich sense [38]. Relation (B.1) derived in appendix B allows us to simplify (10)
in order to deal with one noise only

dz
(law)= −(E + z2) dx +

√
σ + 4gz2 dW(x) (Stratonovich), (11)

where W(x) is a normalized Wiener process (primitive of a white noise). We define
β(z) =

√
σ + 4gz2. This Langevin equation is related to a Fokker–Planck equation (FPE)

∂xT (z; x) = FzT (z; x) where Fz = ∂z(E + z2) + 1
2 [∂zβ(z)]2 is the forward generator.

This equation admits a stationary solution for a constant flow. The current of z through
R corresponds to the number of divergencies of the Ricatti variable per unit length, therefore
to the number of zeros of the wavefunction per unit length. This is precisely the average
integrated density of states (IDoS) per unit length N(E). Therefore

N(E) = (z2 + E)T (z) +
1

2
β(z)

d

dz
[β(z)T (z)]. (12)

We recover on this particular case the general Rice formula limz→∞ z2T (z) = N(E). We
introduce the function U(z) = 4g

∫ z

0 dz′ E+z′2
β(z′)2 ,

U(z) = z +
√

σ

4g

(
4Eg

σ
− 1

)
arctan

(√
4g

σ
z

)
, (13)

we obtain the distribution

T (z) = 2N(E)

β(z)
e− 1

2g
U(z)

∫ z

−∞

dz′

β(z′)
e

1
2g
U(z′)

. (14)

Imposing normalization gives an explicit expression of the IDoS.

2.2. Phase and envelope

The phase formalism introduces another set of variables that give a more transparent picture
to analyze spectrum and localization.

Positive part of the spectrum: E = +k2. We write Hsusy = Q†Q with Q = − d
dx

+ φ(x) and
Q† = d

dx
+ φ(x). Hψ = Eψ with E = k2 can be cast in the form

Qψ = kχ (15)

Q†χ =
(

k − 1

k
V (x)

)
ψ. (16)

We introduce phase θ and envelope eξ variables,

ψ(x) = eξ(x) sin θ(x) (17)

χ(x) = −eξ(x) cos θ(x) (18)

with the initial conditions θ(0) = 0 and ξ(0) = 0. The phase is related to the Ricatti variable
by z = −Qψ

ψ
= k cotg θ . The interest to deal with this couple of variables lies in the basic idea

of the phase formalism, i.e. the node counting method: the IDoS coincides with the number
of nodes of the wavefunction that can be obtained from the evolution of the cumulative phase.
The Lyapunov exponent (inverse localization length) is defined as the rate of increase of the
logarithm of envelope. Therefore N(E) = limx→∞ θ(x)

xπ
and γ (E) = limx→∞ ξ(x)

x
, where

we have omitted average thanks to self-averaging. These expressions give the most simple

6
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way to obtain spectrum and localization length from a practical point of view (for numerical
calculations).

Phase and envelope obey the differential equations

dθ

dx
= k − V (x)

k
sin2 θ + φ(x) sin 2θ (19)

dξ

dx
= V (x)

2k
sin 2θ − φ(x) cos 2θ. (20)

Negative part of the spectrum: E = −k2. If we perform the same manipulations with
E = −k2, we obtain

dθ

dx
= k cos 2θ − V (x)

k
sin2 θ + φ(x) sin 2θ (21)

dξ

dx
= k sin 2θ +

V (x)

2k
sin 2θ − φ(x) cos 2θ. (22)

Invariant measure for the phase. Using (B.1) we can write (for a positive energy)

dθ
(law)= k dx + β̃(θ) dW(x) (Stratonovich), (23)

where β̃(θ) =
√

σ
k2 sin4 θ + g sin2 2θ . The related FPE reads ∂xP (θ; x) = FθP (θ; x) =

where Fθ = −k∂θ + 1
2 [∂θ β̃(θ)]2 is the forward generator. The current of the phase through

the interval [0, π ] is the number of zeros of the wavefunction per unit length N(E). The
stationary solution for constant current N(E) = [

k − 1
2 β̃(θ)∂θ β̃(θ)

]
P(θ) is

P(θ) = 2N(E)

β̃(θ)

∫ π

θ

dθ ′

β̃(θ ′)
e

2k
∫ θ

θ ′ dθ ′′
β̃(θ ′′)2 , (24)

the IDoS is given by normalizing the distribution.

2.3. From multiplicative to additive noise

We have obtained the expression of the IDoS, which is given by normalizing the distribution
(14) or the distribution (24) and is expressed as a double integral. The analysis of the random
process and of its distribution is however made more simple by converting the SDE for the
Ricatti variable (11) or the phase (23), which include multiplicative noises, into a SDE with
additive noise. For that purpose we perform the following change of variable:

z
def=

√
σ

4g
sinh ϕ (25)

(that maps R to R). The relation with the phase variable is cotg θ =
√

σ
4g|E| sinh ϕ. The new

variable obeys the SDE,

dϕ = −
√

σ

4g

[
cosh ϕ +

(
4gE

σ
− 1

)
1

cosh ϕ

]
dx +

√
4g dW(x) = −U ′(ϕ) dx +

√
4g dW(x),

(26)

where we introduced the potential

U(ϕ) =
√

σ

4g

[
sinh ϕ +

(
4gE

σ
− 1

)
arctan(sinh ϕ)

]
. (27)

Note that U(ϕ) = U
(
z =

√
σ
4g

sinh ϕ
)
.

7
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In order to get the IDoS we construct the stationary solution of the FPE ∂xP(ϕ; x) =
FϕP(ϕ; x) where Fϕ = ∂ϕU ′(ϕ) + 2g∂2

ϕ is the forward generator. The stationary solution for
a constant current −N(E) (the variable ϕ goes from +∞ to −∞, therefore currents for the
phase θ and for ϕ are opposite) reads

P(ϕ) = N(E)

2g
e− 1

2g
U(ϕ)

∫ ϕ

−∞
dϕ′ e

1
2g

U(ϕ′)
, (28)

which can also be directly obtained from (14) or (24) since dϕ = −√
4g dθ

β̃(θ)
= √

4g dz
β(z)

.
An alternative way to obtain the IDoS, which will help the discussion and will be used

later, is to introduce the nth moment of the ‘time’ x needed by the process ϕ(x) to reach
−∞, starting from ϕ(0) = ϕ (spatial coordinate x plays the role of the ‘time’ and variable
ϕ of the position). This problem is a first exit problem [38]. The moments are given by
solving the equation BϕTn(ϕ) = −nTn−1(ϕ) where Bϕ = −U ′(ϕ)∂ϕ + 2g∂2

ϕ is the backward
Fokker–Planck generator. The solution is constructed for absorbing boundary condition at
−∞ and reflecting boundary at +∞: Tn(−∞) = 0 and ∂ϕTn(+∞) = 0. We find (see [38] or
the appendix of [33])

Tn(ϕ) = n

2g

∫ ϕ

−∞
dϕ′ e

1
2g

U(ϕ′)
∫ +∞

ϕ′
dϕ′′ e− 1

2g
U(ϕ′′)

Tn−1(ϕ
′′). (29)

Tn(+∞) corresponds to the nth moment of the time needed by random process ϕ to cross R;
therefore, the moment of the distance � between two consecutive nodes of the wavefunction
ψ(x;E). Let us emphasize on this point. We call �i the distance between the two consecutive
nodes of the wavefunction: ψ(0) = ψ(�1) = ψ(�1 +�2) = · · · = 0. The problem of first exist
problem is defined as ϕ(xi) = +∞ and ϕ(xi + �i) = −∞ with ϕ(x) finite for x ∈ ]xi, xi + �i[.
The random variable is �i and 〈�n〉 ≡ Tn(+∞). Note that all distances are i.i.d. due to the fact
that potential have a vanishing correlation length8.

The IDoS per unit length is the average number of nodes of ψ(x;E) per unit length, what
corresponds to the inverse average distance between two consecutive nodes,

N(E)−1 = T1(+∞); (30)

therefore

N(E)−1 = 1

2g

∫ +∞

−∞
dϕ e

1
2g

U(ϕ)

∫ +∞

ϕ

dϕ′ e− 1
2g

U(ϕ′) (31)

that coincides with the normalization of the distribution (28). We will extract limiting behaviors
of this exact expression by analyzing more precisely the dynamics of the random process ϕ(x).

We first remark that the derivative of the potential at the origin is

U ′(0) =
√

4g

σ
E. (32)

For E > 0 the potential is monotonous.
For E < 0 it develops a local minimum able to trap the process during a finite ‘time’. In

this latter case the local minimum of the potential is at ϕ+ > 0 and the top of the barrier at
ϕ− = −ϕ+,

sinh ϕ± = ±
√

4g|E|
σ

. (33)

8 In general, distances �i are decorrelated if correlation length is smaller than the length over which deterministic
dynamics drives ϕ(x) to ∞.
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We easily check that U ′′(ϕ±) = ±2
√−E for E < 0.

Important energy scales. We will identify later the relevant energy scales in the problem. In
each regime (g3 � σ or g3 � σ ) two energy scales matter: the two largest scales among
σ/g, σ 2/3,

√
gσ and g2.

• For small supersymmetric noise g3 � σ , the two relevant energy scales are σ 2/3 and σ/g.
• For large supersymmetric noise g3 � σ , the two energy scales are

√
gσ and g2.

2.4. Density of states for positive energies for g3 � σ

The supersymmetric Hamiltonian is characterized by a purely positive spectrum (which follows
from the structure Hsusy = Q†Q) which presents the famous Dyson singularity at zero energy
[15, 25],

N(σ=0)(E) ∼ g

ln2(g2/E)
for E → 0, (34)

therefore it vanishes at zero energy: N(σ=0)(E = 0) = 0. What is the fraction of states that
migrate to R

− when a very small white noise V (x) breaking the supersymmetry is added to
Hsusy?

Band center: |E| � √
gσ . In the SDE (26), the exponential nature of the potential allows a

decoupling of the deterministic force and the Langevin force (this works for g3 � σ only).

We introduce the value for which the two forces are of the same order: |U ′(�0)| def= 4g,

�0 � ln(16
√

g3/σ). (35)

In the interval [�0, +∞[, the dynamics of the random process is governed by the deterministic
force. The process, starting from +∞, reaches �0 very fast. Then its dynamic is governed
by the Langevin force in [−�0,�0]. Upon arrival at −�0 it is driven very fast to −∞ by
the deterministic force. This allows us to map the problem to the problem of free diffusion
dϕ � √

4g dW(x) on the interval [−�0,�0], with the reflecting boundary condition at +�0

and absorbing boundary condition at −�0 (a similar approximation was used in [33] to study
the supersymmetric Hamiltonian at finite energy E � g2). We immediately conclude that the
average ‘time’ is N(0)−1 = T1(+∞) � (distance)2

diffusion = 1
4g

(2�0)
2. Therefore a fraction of states

N(0) ∼ g

ln2(g3/σ)
(36)

have migrated to R
−.

Let us analyze the structure of the distribution P(ϕ), given by (28), in the low-energy
limit. For ϕ � −�0, we have |U ′(ϕ)| � 2g therefore eU(ϕ)/2g is extremely small and the
integral over ϕ′ is dominated by the close neighborhood of ϕ,

P(ϕ) � N(E)

|U ′(ϕ)| � N(E)

4g

cosh �0

cosh ϕ
∼ eϕ+�0 for ϕ � −�0. (37)

This approximation reflects the fact that when deterministic evolution dominates Velocity(ϕ) =
dϕ

dx
� −U ′(ϕ) the distribution is P(ϕ) ∝ 1/|Velocity(ϕ)|.

In the intermediate interval [−�0,�0], eU(ϕ)/2g is almost flat and the distribution is linear
in this interval,

P(ϕ) � N(E)

2g

[
1

2
e[U(−�0)−U(ϕ)]/2g + (ϕ + �0)

]
∼ ϕ + �0 for −�0 � ϕ � +�0,

(38)

9
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Figure 1. Potential U(ϕ) for g = 1. Left: σ = 0.001 with energies E = 10, 5, 0,−5, −10.
Right: σ = 100 with energies E = 100, 50, 0, −50,−100.

where the first term is the contribution of the interval ]−∞,−�0] to the integral (28). Finally,
we find for the last interval

P(ϕ) � N(E)

2g

[
1

2
e[U(−�0)−U(ϕ)]/2g + (ϕ + �0) e[U(�0)−U(ϕ)]/2g +

1

2

cosh �0

cosh ϕ

]
for �0 � ϕ.

(39)

It decreases exponentially: P(ϕ) ∼ e−ϕ+�0 . The curve is plotted on figure 2. Adding times
spent in the three intervals gives the normalization N(0)−1 � 1

4g
+ 1

g
ln2(16

√
g3/σ) + 1

4g
,

N(E) � 4g

ln2(28g3/σ) + 2
for |E| � √

gσ . (40)

Intermediate energies:
√

gσ � E � g2. In this limit, the potential develops a double plateaux
structure as suggested on figure 1. Once again we use the fact that the deterministic force
depends exponentially on ϕ to decouple the effects of the Langevin force and the deterministic
force. The equation |U ′(ϕ)| = 4g possesses now four solutions: ϕ = ±�0 defined above and
ϕ = ±�E with

�E � ln(E/
√

σg). (41)

The Langevin force dominates the evolution in intervals corresponding to plateaux of U(ϕ),
of width �0 − �E � ln(16g2/E), while the deterministic force governs the evolution on
the other intervals. Let us follow the evolution of the process ϕ(x). (i) In the interval

[�0,∞[ the deterministic force, dϕ � −U ′(ϕ) dx � −
√

σ
4g

cosh ϕ dx, drives the process

from ϕ = ∞ to ϕ = �0 in a ‘time’ 1/(4g). (ii) In [�E,�0], the Langevin force dominates:
dϕ � √

4g dW(x). Given that one is reflected at �0, the average ‘time’ required to reach �E

for the first time is (distance)2

diffusion = 1
4g

(�0 − �E)2. (iii) In [−�E,�E], the deterministic force

dominates dϕ � −U ′(ϕ)dx � −
√

4g

σ
E 1

cosh ϕ
dx and drives the process from one edge of the

interval to the other in a ‘time’ 1/(2g). (iv) In [−�0,−�E], the Langevin force dominates: the
process crosses the interval in an average ‘time’ 1

4g
(�0 − �E)2. (v) Finally, the deterministic

force brings the process from −�0 to −∞ in a ‘time’ 1/(4g).

10
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Figure 2. Distribution P(ϕ) (blue curves) for (a) E = −0.01, (b) E = 0, (c) E = 0.1 and
(d) E = 2 (with σ = 10−4 and g = 1). These behaviors can be understood from the shapes of the
potential of the left part of figure 1. For E = −√

σg = −0.01: the distribution is compared to
exp[− 1

g

√|E| cosh(ϕ−ϕ+)]. For the other energies, the distribution is compared to approximations
obtained in the text.

The analysis of the distribution (28) follows the same logic. In the two intervals where
motion is diffusive (where the process spends most of the time),

P(ϕ) � N(E)

2g

{
ϕ + �0 for −�0 � ϕ � −�E

ϕ − �E for �E � ϕ � �0
(42)

(see figure 2). Normalizing this distribution gives N(E)−1 � 1
g

+2 (�0−�E)2

4g
� 1

2g
ln2(16g2/E);

therefore, we recover the usual Dyson singularity (the scalar potential V (x) plays no role),

N(E) � 2g

ln2(16g2/E) + 2
for

√
gσ � E � g2. (43)

Large energies: E � g2. Finally, for completeness, we give the distribution in the high-
energy limit. In this case, the phase distribution is almost flat P(θ) � 1/π therefore the
distribution for ϕ presents the double peak structure,

P(ϕ) � 1

π

sinh ϕ+ cosh ϕ

sinh2 ϕ+ + sinh2 ϕ
, (44)

where ϕ+ is defined by (33). The two peaks are associated with inflection points of the potential
U(ϕ) where the force is minimum (note that ±ϕ̃+ � ϕ±). The IDoS is given by the free IDoS
N(E) � 1

π

√
E.
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2.5. Lifshits tail

In this paragraph we analyze the tail of the IDoS in the region of rarefaction of states, that is
for E → −∞.

For negative energies, the process ϕ(x) is trapped by the well at ϕ = ϕ+ a very long ‘time’
where positions ϕ± of the extrema of the potential are given by (33). The average ‘time’
needed to exit the well due to a fluctuation (Langevin force) is given by the Arrhenius formula.
The height of the potential barrier is given by

1

2g
[U(ϕ−) − U(ϕ+)] =

√
σ

4g3
F

(
4g|E|

σ

)
(45)

with

F(x)
def= 2(x + 1)[arctan(

√
x + 1 +

√
x) − π/4] − √

x

=

⎧⎪⎨
⎪⎩

2

3
x3/2 + O(x5/2), for x � 1

π

2
x − 2

√
x +

π

2
+ O(x−1/2), for x � 1.

(46)

Assuming 1
2g

[U(ϕ−) − U(ϕ+)] � 1 we can expand integrands in (31). As we can see on

figure 1, in the limit g3 � σ the potential U(ϕ) is parabolic near its extrema and we can use
formula (A22) of [33]. However in the regime g3 � σ the parabolic approximation is not
correct. In this latter case, noting that

U(ϕ) �
ϕ∼ϕ±

const. ± 2
√

|E| cosh(ϕ − ϕ±) , (47)

we obtain

N(E) � g

2

[
e

√|E|
g K0

(√|E|
g

)]−2

exp −
√

σ

4g3
F

(
4g|E|

σ

)

for |E| � max(σ 2/3,
√

gσ), (48)

where K0(z) is the MacDonald function (modified Bessel function of third kind). We can
now consider two situations, depending on which among the supersymmetric noise φ(x) or
the scalar noise V (x) dominates.

Small supersymmetric noise: g3 � σ . In the intermediate range we recover from (48) the
Lifshits tail of the Hamiltonian Hscalar = − d2

dx2 + V (x) [5, 12, 39],

N(E) �
√|E|

π
exp −8|E|3/2

3σ
for σ 2/3 � |E| � σ/g. (49)

The supersymmetric noise does not affect the DoS in this regime.
For larger values of |E| the tail takes the form

N(E) �
√|E|

π
exp

[
−π |E|√

gσ
+ 2

√|E|
g

− π

4

√
σ

g3

]
for |E| � σ/g. (50)

Even though the supersymmetric noise is much smaller than V (x), the behavior at largest
values of |E| is due to a competition between φ and V .

Large supersymmetric noise: g3 � σ . Expanding (48), we see that the IDoS presents the
limiting behaviors

N(E) � 2g

ln2(g2/|E|) exp −π |E|√
gσ

for
√

gσ � |E| � g2 (51)

12
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and

N(E) �
√|E|

π
exp

[
−π |E|√

gσ
+ 2

√|E|
g

]
for |E| � g2. (52)

It is interesting to note that the prefactors coincide with the limiting behaviors obtained for
positive energies: N(E) � 2g

ln2(g2/E)
for

√
gσ � E � g2 and N(E) � 1

π

√
E for E � g2.

2.6. Extreme value spectral statistics

Up to now we have studied spectral properties through the density of states. In this section,
we consider another property of the spectrum: the problem of extreme value statistics for the
eigenvalues of the Hamiltonian (2). Let us formulate the problem: for a given realization of the
potential, the spectral (Sturm–Liouville) problem Hψ(x) = Eψ(x) for boundary conditions
ψ(0) = ψ(L) = 0 has a discrete set of solutions Spec(H) = {En} (we assume that label
corresponds to rank the eigenvalues as E1 < E2 < E3 < · · ·). We ask the question: what is
the distribution

Wn(E) = 〈δ(E − En)〉 (53)

of the nth eigenvalue? These distributions give a much more precise information on the
spectrum than the density of states, what is already clear from the relation

∑∞
n=1 Wn(E) =

LρL(E) where ρL(E) is the average DoS per unit length accounting for the Dirichlet boundary
conditions at x = 0 and x = L (when L → ∞ the sensitivity to the boundary conditions
disappears: limL→∞ ρL(E) = N ′(E), where N(E) is the IDoS per unit length of the infinite
system studied above). The distribution Wn(E) gives the probability to find the nth eigenvalue
at E whereas the DoS ρL(E) tells us the probability to find any eigenvalue at E.

The study of extreme value statistics in various contexts has attracted a lot of attention.
Extreme value statistics of uncorrelated and identically distributed variables were classified
long-time ago (Gumbel for an exponentially decreasing distribution, Fréchet for a power law
and Weibull for distribution with bounded support [40, 41]). Extreme value statistics for
correlated variables is a much more difficult task. A famous example is the Tracy–Widom
distribution for eigenvalues of Gaussian random matrices [42, 43]. There has been a renewed
interest in such problems in the last few years (see, for example, [44, 45]).

The question of extreme value statistics of a 1D random Hamiltonian was first addressed
in [46] for the Hamiltonian H = − d2

dx2 +
∑

n vnδ(x − xn) where positions are uncorrelated
and uniformly distributed; weights vn are positive, uncorrelated and distributed according to
a Poisson law. The case of the Hamiltonian Hscalar = − d2

dx2 + V (x) where V (x) is a white
noise was studied in [47] where W1(E) was derived. This result was generalized in [33]
where it was shown that the distributions Wn(E) are Gumbel laws when L → ∞: despite that
eigenvalues En are random variables a priori correlated, extreme value distributions coincide
with those of uncorrelated variables. Such an absence of spectral correlations is a consequence
of the strong localization of the wavefunctions in this regime [48]. Extreme value spectral
statistics for the supersymmetric Hamiltonian (1) near the delocalization transition was also
considered in [33]; it was noted that in this case the distributions Wn(E) do not coincide with
extreme value statistics for uncorrelated variables, a consequence of spectral correlations near
the delocalization transition.

We first consider the limit of strong supersymmetric disorder g3 � σ . When a small
scalar noise is added to the supersymmetric Hamiltonian, we have seen that the spectrum is
not anymore constrained to be in R

+. A simple way to obtain the typical ground-state energy
is to write that LN(E1) ∼ 1 from which we obtain E1 ∼ −√

σg ln L. Since the exponential

13
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tail of the IDoS is usually associated with strongly localized states, what will be supported by
the study of localization in section 3, we expect that the distributions (53) are similar to the
one obtained for Hscalar (Gumbel laws). This is the aim of the following paragraph to show
this statement explicitly.

We first assume that the length of the system is sufficiently long so that the support of (53)
is in R

− with energies far from the band center |E| � √
gσ . In this case, the process ϕ(x) is

trapped by the well of the potential U(ϕ). The ‘time’ � needed by the process to go from +∞ to
−∞ (� is the distance between two consecutive nodes of the wavefunction) is dominated by the
time needed to exit the well. Its moments (29) are given by 〈�n〉 = Tn(+∞) � n![T1(+∞)]n

what corresponds to a Poisson law. As a consequence it was shown in [33] that

Wn(E) � Lρ(E)
[LN(E)]n−1

(n − 1)!
e−LN(E), (54)

where the IDoS per unit length of the infinite system is given by (51), (52). The question of
which, among (51) or (52), is the behavior to be considered in order to analyze Wn(E) depends
on where the support of the distribution is. A priori for the longest size L → ∞ we expect that
Wn(E) has its support for energies below −g2 whereas for intermediate length L the support
is between −g2 and −√

σg. This question will be rediscussed more precisely below.
We see from equations (51), (52) that the density of states per unit length is well

approximated by ρ(E) � π√
gσ

N(E). In a first time we assume that L is sufficiently large so

that the support of Wn(E) is below −g2. We can use (52) from which we write

Wn(E) � 1

(n − 1)!

π√
gσ

(
L

π

)n

e−f (E) (55)

with

f (E) = −n

2
ln|E| +

nπ |E|√
gσ

− 2n
√|E|
g

+ n
π

4

√
σ

g3
+

√|E|L
π

e− π |E|√
gσ

+ 2
√|E|
g

− π
4

√
σ/g3

(56)

(note that we have reintroduced the term π
4

√
σ/g3 neglected in (52) but present in (50); this

will be useful to discuss the other limit g3 � σ ). It is convenient to re-scale energy and length
as

y = π |E|√
gσ

and L̃ = (gσ )1/4L

π3/2n
, (57)

and furthermore to introduce the quantity ε = (σ/π2g3)1/4. Hence, in terms of the new
variables we find f (E) = g(y) + const for

g(y) = n
[
− 1

2 ln y + y − 2ε
√

y + L̃√
y e−y+2ε

√
y
]

with L̃ = L̃ e−( πε
2 )2

. (58)

The derivative reads g′(y) = n
(
1− 1

2y
− ε√

y

)
(1− L̃√

y e−y+2ε
√

y). The first parentheses vanish
for a value of y corresponding to energy out of the range defined in (52); it should not be
considered as an extremum. The extremum y = ỹ is solution of

L̃
√

ỹ e−ỹ+2ε
√

ỹ = 1. (59)

In the limit L → ∞ we find

ỹ = ln L̃ +
1

2
ln ln L̃ + 2ε

√
ln L̃ +

(
2 − π2

4

)
ε2 + O

(
ln ln L̃√

ln L̃
,

ε√
ln L̃

)
. (60)

We can easily show that higher derivatives are given by g(k)(ỹ) � n(−1)k for L̃ → ∞ and
k > 1. Typical value of the energies (value that maximizes Wn(E)) is

E
typ
n = −

√
gσ

π
ln(L̃

√
ln L̃) − 2σ 3/4

π3/2g1/4

√
ln L̃ + · · · . (61)
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Figure 3. The nth energy-level distribution Wn(E) for 1 � n � 6 with g = 10, σ = 1 and
L = 104. We see from equations (61), (62) that the dependence in n of the typical energy level
and the width are E

typ
n � E

typ
1 + 1

π

√
gσ ln(n) and δEn � δE1/

√
n, respectively.

The width of the distribution is independent on the length,

δEn � 1

π

√
σg

n
. (62)

Following [33] we can reconstruct g(y) in the neighborhood of ỹ by using the derivatives. An
alternative formulation is to expand g

(
ỹ − 1√

n
X
)
, where X = 1

δEn

(
E − E

typ
n

) = √
n(ỹ − y).

We can neglect all terms vanishing in the limit ỹ → ∞ (i.e. L̃ → ∞) since X ∼ 1. We have

1

n
g

(
ỹ − 1√

n
X

)
= −1

2
ln(ỹ − X/

√
n) + ỹ − X/

√
n − 2ε

√
ỹ − X/

√
n

+ L̃

√
ỹ − X/

√
n e−ỹ+X/

√
n+2ε

√
ỹ−X/

√
n. (63)

Using (59), we obtain

1

n
g

(
ỹ − 1√

n
X

)
�

ỹ→∞
const − X√

n
+ eX/

√
n. (64)

Therefore we have recovered the Gumbel law

Wn(E) =
L→∞

1

δEn

ωn

(
E − E

typ
n

δEn

)
with ωn(X) = nn−1/2

(n − 1)!
exp(

√
nX − n eX/

√
n) .

(65)

The first distributions are plotted on figure 3.
Let us do several remarks

• The results (61), (62), (65) have been obtained using the asymptotic form of the IDoS
(52). Therefore, it was assumed from the outset of the calculation that the support of the
distribution (65) is below −g2. The condition −E

typ
n � g2 can be recast as a condition

on the length of the system

L � nπ3/2

(σg)1/4
eπ

√
g3/σ . (66)
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√
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Figure 4. Illustration of regimes for the typical ground-state energy E1 with increasing system
sizes L in the large supersymmetric noise limit g3 � σ .

• If the length of the system does not satisfy condition (66), the support of Wn(E) is shifted
above to the interval between −g2 and −√

σg. Therefore the above calculation should be
redone starting from (51). The results are almost similar: the final distribution (65) still
holds for the same width (62). Only the behavior of the typical energy changes slightly,

E
typ
n � −

√
gσ

π
ln

⎛
⎝ L̃′

ln2 π
√

g3/σ

ln L̃′

⎞
⎠ (67)

with L̃′ = 2gL

n
. This expression holds when the length of the system is such that

1

g
� L � 1

g
eπ

√
g3/σ . (68)

The crossover (for L ∼ eπ
√

g3/σ ) obviously corresponds to E
typ
n ∼ −g2.

For smaller system sizes L � 1/g we expect the disorder to have a perturbative effect
and consequently the energy level to be close to the free levels En � (πn/L)2, n ∈ N

∗.
Figure 4 summarizes the different regimes for the ground-state energy E1.

• The introduction of the scalar noise has rather strong consequences on the distributions
Wn(E). (A) For σ = 0 distributions Wn(E) are broad distributions (in particular
E

typ
1 ∼ g2 e−gL and 〈E1〉 ∼ g2 e−(gL)1/3

) departing from Gumbel distributions, a
consequence of spectral correlations [33]. (B) For σ �= 0 the distributions are narrow
distributions centered on E

typ
n ∼ −√

gσ ln L and coinciding with Gumbel distributions,
an indication of absence of spectral correlations. We now characterize the crossover
scale of scalar noise separating the two situations (A) and (B). Let us reason at fixed
g and L (with L � 1/g) and introduce an infinitesimal σ : we start from the situation
(A). If σ is increased, the length L fulfills condition (68) and the ground-state energy is
given by (67), provided that at least one state is below −√

gσ . This last condition reads
LN(−√

gσ) ∼ gL

ln2(g3/σ)
� 1. This leads to the crossover value

σc ∼ g3 e−√
gL (69)

separating (A) and (B). Below this value (σ � σc) the scalar noise can be ignored.
Another simple way to obtain this scale is to write −E

typ
n � √

gσ , where the typical
energy is given by (67).

• Small supersymmetric noise. Finally we mention the results for σ � g3. If the support
of Wn(E) is in the interval between −σ/g and −σ 2/3 the supersymmetric noise does not
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L

σ−1/3 e
8
3
√

σ/g 3

σ1/3
eπ

√
σ/g 3

(gσ)1/4

E1 ≈ π2

L2 E1 ≈ − 8σ
3 ln L̃

2/3 −σ
g E1 ≈ −

√
gσ
π ln L̃ ln L̃

Figure 5. Illustration of regimes for the typical ground-state energy E1 with increasing system

sizes L in the small supersymmetric noise limit g3 � σ . We recall that L̃ = L̃ e− π
4

√
σ/g3

.

play any role and we recover the results of [33] obtained for Hscalar: the form (65) holds
for

E
typ
n � −

(
3σ

8
ln L̃′′

)2/3

and δEn � σ 2/3

2
√

n
(ln L̃′′)−1/3 (70)

with L̃′′ = Lσ 1/3

2πn
(this time the width of the distributions vanish in the limit L → ∞). The

hypothesis made on the position of the support of Wn(E) implies that the length satisfies

σ−1/3 � L � nσ−1/3 e
8
3

√
σ

g3
. (71)

For longer lengths we recover the behaviors (61), (62). Now the term ε2 of (60) neglected

above is large, what adds a term to (61). We can check that at the crossover (L ∼ e
8
3

√
σ/g3

)

both (61) and (70) give E
typ
n ∼ −σ/g.

An illustration of the different regimes is given in figure 5.

3. Localization

Up to now we have concentrated ourselves on the spectral properties of the random
Hamiltonian; however, the most stricking property of Hamiltonians with random potentials
is the localization of their wavefunctions. In a typical situation, for example if we consider
the Hamiltonian Hscalar = − d2

dx2 + V (x) where V (x) is random with short-range correlations,
one should distinguish two regions in the spectrum: in the low-energy regime, lowest energy
states are those trapped by deep wells of the potential. The nature of the trapping depends on
the statistical properties of V (x) (Gaussian white noise, low density of repulsive or attractive
impurities, etc). This kind of localization is rather natural. It is correlative to a rarefaction
of states reflected in the Lifshits exponential tail of the IDoS (section 2.5). On the other
hand, in the high-energy range (E � disorder) the phenomenon of Anderson localization
[49] takes place: in a regime where the static potential is a priori perturbative, due to
interferences between the extremely large number of scattering paths, the wavefunctions
decrease exponentially over distances larger than the Fermi wavelength, a nonperturbative
effect. Whereas in the 3D situation a delocalization (Anderson) transition occurs by tuning
the strength of the disordered potential [6], the 1D case is particular since all states are
localized [50], a statement rigorously proved in [51, 52]. The problem of 1D Anderson
localization has been reformulated and re-examined in many works (see, for example,
[5, 37, 53, 61]). As we mentioned in the introduction the random supersymmetric Hamiltonian
presents particular localization properties since the low-energy Dyson singularity of the IDoS
[1] is accompanied by a delocalization transition [15, 20]. These features are strongly related to
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the (super)symmetry of the Hamiltonian. In this section, we will examine how the localization
picture is modified by breaking the supersymmetry in the Hamiltonian (2).

Information on localization of wavefunctions can be obtained by considering different
variables. The most transparent formulation is probably provided by considering the variables
(θ, ξ) of the phase formalism. Localization length �loc is related to the damping rate of the
envelope of the wavefunction. Therefore, we can define the localization length by analyzing
the solution of the Cauchy problem: from equations (17), (18) we take as a definition the
relation 1/�loc = γ = limx→∞ ξ(x)

x
, where γ is the Lypaunov exponent (note that we can

omit the disorder averaging in this definition thanks to self-averaging of this process)9. It
is interesting to emphasize that this definition of the localization length is extracted from
the solutions ψ(x;E) of the Cauchy problem, and not from the real wavefunctions ϕn(x)

(solution of the Sturm–Liouville problem). In other terms the Lyapunov exponent gives a
good estimate of the localization length of ϕn(x) if the statistical properties of the envelope of
the solution of the Schrödinger equation is not affected when imposing the second boundary
condition. In the high-energy limit where processes θ(x) and ξ(x) rapidly decorrelate [13]
this is not a problem, however it is not obvious that this holds in any situation (in particular for
the supersymmetric Hamiltonian Hsusy, the Lyapunov exponent does not seem to give a fully
satisfactory information as pointed out in the conclusion of [33]).

Since the analysis provided in the previous sections is based on the study of the dynamics
of z(x) or ϕ(x) = argsinh(

√
4g/σz(x)), we will extract the localization length from the

statistical properties of these stochastic processes. We will derive several formulae and use
the most adapted in the various regimes. Let us recall that the simplest expression of the
Lyapunov exponent is given by the average of the Ricatti variable [5],

γ (E) =
〈
ψ ′(x;E)

ψ(x;E)

〉
= 〈z〉 + 〈φ〉 . (72)

As in the previous sections we consider here the case 〈φ〉 = 0. Together with the expression
of the stationary distribution T (z), this immediately gives the Lyapunov exponent. Note that
since T (z) � N(E)/z2 for |z| → ∞ (Rice formula), the expression must be understood as
γ = ∫

R
dz z T (z)−T (−z)

2 in order to deal with a well-defined integral. We can also avoid this
problem by deriving other formulae, which is what we do now.

Positive part of the spectrum: E = +k2. We rewrite the two SDE (19), (20) for phase and
envelope as

dθ = k dx −
√

σ

k
sin2 θ dW1(x) +

√
g sin 2θ dW2(x) (Stratonovich) (73)

dξ =
√

σ

2k
sin 2θ dW1(x) − √

g cos 2θ dW2(x) (Stratonovich), (74)

where W1(x) and W2(x) are two normalized independent Wiener processes. Since the
Lyapunov exponent is related to 〈ξ(x)〉 we connect these Stratonovich-SDE to some Ito-SDE
and use the fact that with this latter prescription, random process and noise are decorrelated at
equal ‘time’,

dθ =
(
k +

σ

2k2
sin2 θ sin 2θ +

g

2
sin 4θ

)
dx −

√
σ

k
sin2 θ dW1 +

√
g sin 2θ dW2 (Ito) (75)

9 This picture suggests that the wavefunction behaves roughly as ψ(x) ∼ e±γ x × (oscillations); however, one should
keep in mind that such a simple picture is dangerous since it forgets the important fact that the argument of the
exponential, ξ(x), presents large fluctuations increasing like

√
x (fluctuations of ξ(x)/x vanish for x → ∞, but not

those of ξ(x)). The envelope of the wavefunction is an exponential of a drifted Brownian motion, what can have
important consequences [54]; neglecting this important feature can lead to a wrong conclusion, like in [55].
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dξ =
(
− σ

2k2
sin2 θ cos 2θ + g sin2 2θ

)
dx +

√
σ

2k
sin 2θ dW1 − √

g cos 2θ dW2 (Ito). (76)

We immediately obtain the following expression:

γ = d〈ξ 〉
dx

= − σ

2k2
〈sin2 θ cos 2θ〉 + g〈sin2 2θ〉, (77)

where averaging is realized with the stationary distribution. This relation is similar in spirit
to the one derived in [56] for Hscalar. This equation, with the distribution (24), gives another
explicit expression for the Lyapunov exponent. The Lyapunov exponent can also be expressed
in term of the distribution (14),

γ = σ

2

〈
E +

( 8Eg

σ
− 1

)
z2

(E + z2)2

〉
(78)

or the distribution (28)

γ = 2g〈ϒ4Eg/σ (ϕ)〉 with ϒA(ϕ)
def= A + (2A − 1) sinh2 ϕ

(A + sinh2 ϕ)2
. (79)

Note that expressions (77)–(79) are valid for E > 0 and are note appropriate to study
the limit E → 0: for example the equation with the Ricatti variable would take the
absurd form ‘γ = − σ

2

〈
1
z2

〉
’ (absurd since T (z) is regular at z = 0). The origin of the

problem can be understood from (12) that shows that in the limit E → 0, the two terms
T (z) = N(E)

z2+E
− β(z)

2(z2+E)
d
dz

[β(z)T (z)] cannot be considered separately. A more detailed
discussion is given in appendix C.

Band center. In this regime, due to the previous remark, we start from γ = 〈z〉 =
√

σ
4g

〈sinh ϕ〉.
Using the fact that the approximate expression of the distribution is symmetric for |ϕ| � �0,
we write 〈sinh ϕ〉 � ∫ +�0

−�0
dϕ P(ϕ) sinh ϕ. We obtain

γ (0) � 4g

ln(16g3/σ)
for |E| � √

gσ . (80)

Note however that the multiplicative factor 4 is directly related to our definition of �0 separating
regions where deterministic force and Langevin force dominates: |U ′(�0)| = 4g. Therefore,
in this derivation, the factor 4 is arbitrary. However the replica method of section 4 will predict
the same prefactor. We would not have the same problem for the other regime since we will
use formula (79) instead of (72).

This result shows that even a tiny σ → 0 scalar noise is sufficient to lift the delocalization
transition of the supersymmetric Hamiltonian.

Intermediate energies:
√

gσ � E � g2. The function ϒA(ϕ) presents two symmetric peaks
centered on ϕ � ± 1

2 ln(4A). Note that 1
2 ln(4A) = 1

2 ln(16Eg/σ) = 1
2 (�0 + �E). We remark

that, for A = 4Eg

σ
� 1, we have

∫∞
0 dϕ ϒA(ϕ) � 1 and

∫∞
0 dϕ ϕϒA(ϕ) � 1

2 ln(4A) (these
equalities are already excellent for A = 0.5). Therefore, using the approximate form of the
distribution derived above, we can write

γ � 2g

(�0 − �E)2

[∫ 0

−∞
dϕ(ϕ + �0)ϒA(ϕ) +

∫ ∞

0
dϕ(ϕ − �E)ϒA(ϕ)

]
= 2g

�0 − �E

. (81)

Therefore, we recover the result obtained for the supersymmetric Hamiltonian alone [15]

γ (E) � 2g

ln(16g2/E)
for

√
gσ � E � g2. (82)
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High-energy limit. In the high-energy limit the distribution of the phase θ is almost flat,
therefore using (77)

γ (E → +∞) � σ

8E
+

g

2
= γscalar + γsusy, (83)

where γscalar � σ
8E

and γsusy � g

2 are the high-energy Lyapunov exponents for Hscalar =
− d2

dx2 + V (x) and Hsusy, respectively.
For E → ∞ the localization length saturates to �loc � 2/g. The high-energy

wavefunctions present rapid oscillations over a scale 1/k exponentially damped on a larger
scale 2/g.

Negative part of the spectrum: E = −k2. As we have seen above, compare to the SDE
for E = +k2, the SDE for the variable ξ for E = −k2 receives an additional term k sin 2θ ,
therefore

γ = k〈sin 2θ〉 − σ

2k2
〈sin2 θ cos 2θ〉 + g〈sin2 2θ〉. (84)

In the limit E → −∞ the phase is trapped at θ � π/4 (this is related to trapping of ϕ by the
local minimum of potential U(ϕ) at ϕ+), therefore

γ (E → −∞) � √−E + g. (85)

This increase of the Lyapunov exponent reflects that the low-energy wavefunctions are sharply
peaked around deep wells of the potential.

4. Replica method

In this section, we derive analytic expressions for the IDoS and the Lyapunov exponent by
using the replica method. The computation consists of a slight variant of the method used
in [15], which leads to hypergeometric functions, generalizing the Bessel and Airy functions
appearing in the pure supersymmetric and pure scalar potential problem respectively [57].
Therefore, we only sketch the main lines and refer to [15] for details.

We consider the Hamiltonian (2) with V (x) and φ(x) two uncorrelated Gaussian
white noises, in the more general case where 〈φ(x)〉 is finite: V (x) = √

ση(x) and
φ(x) = μg +

√
gη̃(x) (η(x) and η̃(x) with μ > 0 are two uncorrelated normalized Gaussian

white noises of zero means). As mentioned above, the problem of δ-correlations between the
noises may be mapped on the uncorrelated case (see appendix A). The spectral properties of
H are encoded in Green’s function G(x, y;E) given by the matrix element

G(x, y;E) = (x| 1

E − H
|y) =

∑
α

�α(x)�∗
α(y)

E − Eα

(86)

in position space. Here �α denotes the eigenfunction associated with the energy level Eα ,
and the sum runs over all states α. According to Thouless’ formula, average with respect to
disorder 〈G(x, x;E)〉 of Green’s function at equal points yields the derivative of Lyapunov
exponent as a function of E [58]. Analytic continuation E → E − i0+ allows us to write

〈G(x, x;E − i0+)〉 = γ ′(E) + iπρ(E), (87)

where ρ(E) is the density of states per unit length.
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4.1. The n-replica Hamiltonian

We shall make use of the replica trick in order to compute the averaged equal-point Green’s
function (87) (see, for example, [39]). To this end, we introduce an auxiliary n-component
field χ = (χ1, . . . , χn) and rewrite 〈G(x, x;E)〉 in terms of a Gaussian path integral with
respect to χ ,

〈(x|(H − E)−1|x)〉 = 1

L

∫ +L/2

−L/2
dx〈(x|(H − E)−1|x)〉

= 1

L
lim
n→0

∂

∂n

∫ +L/2

−L/2
dx

∫
Dχ χ(x)2

〈
exp

(
−1

2

∫ +L/2

−L/2
dy χ(y)(H − E)χ(y)

)〉

= 2

L

∂

∂E
lim
n→0

∂

∂n

∫
Dχ

〈
exp

(
−1

2

∫ +L/2

−L/2
dy χ(y)(H − E)χ(y)

)〉
. (88)

Note that the first line makes explicit use of translation invariance after average with respect
to disorder. The limit n → 0 eliminates the residual determinant from path integration with
respect to χ . We thus are interested in the n-replica partition function

Zn =
∫

Dχ

〈
exp

(
−1

2

∫ +L/2

−L/2
dx χ(x)(H − E)χ(x)

)〉

=
∫

Dχ exp

(
−
∫ +L/2

−L/2
dx L(χ, χ̇)

)
, (89)

where the average over disorder has lead to the Lagrangian

L(χ, χ̇) = 1

2
χ̇2 − g

2(1 + gχ2)
(χ · χ̇ )2 +

μ2g2χ2

1 + gχ2

− 1

2
Eχ2 − 1

8
σ(χ2)2 +

1

2
δ(n)(0) ln det(1 + gχ2). (90)

As the formula suggests, we abbreviate χ2 = ∑
i (χ

i)2 and the scalar product χ ·η = ∑
i χ

iηi .
Rewriting L as

L = 1

2

n∑
i,j=1

ηij (χ)χ̇ i χ̇ j + V (χ), ηij (χ) = δij − gχiχj

1 + gχ2
(91)

shows that the Lagrangian describes the motion of a point particle in an n-dimensional curved
space with metric ηij . The potential is given by

V (χ) = μ2g2χ2

1 + gχ2
− 1

2
Eχ2 − 1

8
σ(χ2)2 +

1

2
δ(n)(0) ln det(1 + gχ2). (92)

The contact term δ(n)(0) may be eliminated by introducing an auxiliary field � =
√

1 + gχ2

and rewriting the functional integration measure as DχD�δ(�2 − gχ2 − 1); following [15]
this term will not be considered in what follows. We recognize an σ -model with symmetry
group O(n, 1). In one spatial dimension, we may transform it to a quantum-mechanical
problem in n-dimensions where x plays the role of time. Hence we must identify a proper
Hamiltonian H related to L and study its spectrum. H acts on a Hilbert space with inner
product

(�,�) =
∫

R
n

dnχ
√

det η �∗(χ)�(χ) =
∫

R
n

dnχ√
1 + gχ2

�∗(χ)�(χ) (93)
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and its eigenvalues Eν(n) and eigenfunctions �ν(χ) are given by the solutions of H�ν(χ) =
Eν(n)�ν(χ) with ‖�ν‖2 = (�ν,�ν) < ∞. Since the derivation of H is very much like in
[15] we only state the result. From (91) and (92) we find the n-replica Hamiltonian

H = 1

2

(
−� + (1 − n)χ · ∇ − (χ · ∇)2 +

n

2
− 1

4

χ2

1 + χ2

)
+ V (χ). (94)

The angular eigenstates are given by the Gegenbauer polynomials C
n/2−1
� (cos θ) where �

denotes the main angular quantum number. After separation of the angular part, we are left
with the radial part of the Hamiltonian that depends only on the modulus ρ =

√
χ2,

Hr = −1

2
(1 + gρ2)

∂2

∂ρ2
− n − 1

2ρ

∂

∂ρ
− ngρ

2

∂

∂ρ
+

�(� + n − 2)

2ρ2

+
gn

4
+

μ2g2ρ2

1 + gρ2
− 1

2
Eρ2 − 1

8
σρ4. (95)

4.2. The ground state: Lyapunov exponent and IDoS

In the limit L → ∞ we expect that the path integral (89) has a leading term exp[−LEG(n)/2]
where EG(n)/2 corresponds to the ground-state energy of the Hamiltonian H. Combining
(87)–(89) we conclude that

γ (E) + iπN(E) + const = − 2

L

∂Zn

∂n

∣∣∣∣
n=0

= ∂EG(n)

∂n

∣∣∣∣
n=0

. (96)

As above, N(E) denotes the integrated density of states per unit length, and γ (E) the
Lyapunov exponent. The constant must be chosen in order to ensure correct asymptotic
behavior E → ±∞ (in particular N(E → −∞) = 0). We shall discuss this problem below.
Following the spirit of the replica method, we analytically continue EG(n) = nE0 + n2E1 + · · ·
and thus identify

γ (E) + iπN(E) = E0 + const. (97)

We now compute E0 for the Hamiltonian (95). We expect the ground state to be an s-wave
state with total angular momentum � = 0. Changing variables to ξ 2 = 1 + gρ2 in (95) leads
to the Hamiltonian

Hr = g(ξ 2 − 1)

2
T +

ng

2

(
1

2
− ξ

∂

∂ξ

)
, with

T = − ∂2

∂ξ 2
− E

g2
− σ

4g3
(ξ 2 − 1) +

μ2 − 1/4

ξ 2
. (98)

Consequently, we must solve the equation Hr� = 1
2EG(n)� for the ground-state

wavefunction. As for the eigenvalue EG(n), we expand the ground-state wavefunction into a
power series with respect to n: � = �0 + n�1 + · · ·. This yields an infinite system of coupled
differential equations whose first two members are

T �0 = 0 and
g(ξ 2 − 1)

2
T �1(ξ) +

g

2

(
1

2
− ξ

∂

∂ξ

)
�0(ξ) = E0

2
�0(ξ). (99)

Since we seek for a normalizable ground-state wavefunction in the limit n → 0 we have to
find a square-integrable solution of T �0(ξ) = 0. Applying the limit ξ → 1 in (99), we finally
may relate �0 to the eigenvalue

E0 = g

(
1

2
− ξ

�0(ξ)

∂�0(ξ)

∂ξ

)∣∣∣∣
ξ=1

. (100)

22



J. Phys. A: Math. Theor. 41 (2008) 405302 C Hagendorf and C Texier

The solution is given in appendix D and yields the wavefunction �0,

�0(ξ) = exp

(
− iξ 2

4

√
σ

g3

)
ξμ+1/2 U

(
μ + 1

2
+

i

2

(
E√
σg

− 1

4

√
σ

g3

)
, μ + 1,

iξ 2

2

√
σ

g3

)
,

(101)

where U(a, b, z) denotes the second confluent hypergeometric function [59]. Therefore, E0

takes the value

E0 = −μg − i

2

√
σ

g

(
1 − 2aU(a + 1, b + 1, i

√
σ/4g3)

bU(a, b, i
√

σ/4g3)

)
, (102)

where we have introduced

a = μ + 1

2
+

i

2

(
E√
σg

− 1

4

√
σ

g3

)
and b = μ + 1 . (103)

The imaginary part can be extracted by using the Wronskian (D.5) of �0(ξ) and its complex
conjugate,

N(E) = g

π

(
4g3

σ

) μ

2 exp(π Im a)

|U(a, b, i
√

σ/4g3)|2
. (104)

We have obtained a compact expression that can be used more conveniently than the double
integral (31) in order to plot the IDoS.

Equations (102)–(104) provide an exact solutions for the Lyapunov exponent γ (E) as well
as the IDoS N(E) for this model, up to a constant which depends upon σ , g and μ, and may
be fixed by imposing correct asymptotic behaviors, like limE→−∞ N(E) = 0. These results
interpolate between the known cases of white noise potential and the random supersymmetric
Hamiltonian.

Let us give an example on how to use (102), (103) to study the behavior at E = 0 for the
Sinai case μ = 0. We have

a = 1

2
− i

8

√
σ

g3
and b = 1. (105)

Recall that the confluent hypergeometric function U(a, b, z) behaves like

U(a, b, z) ∼
z→0

{
�(b − 1)/�(a)z1−b, b > 1

(ln z + ψ(a))/�(a), b = 1
. (106)

For small Gaussian noise σ → 0+ we tacitly neglect the small imaginary part of a, leading to
further corrections, and find

E0 ≈
E=0

+
i

2

√
σ

g

⎛
⎝1 − 2

ln
(

i
2

√
σ
g3

)
+ ψ(1/2)

(
i

2

√
σ

g3

)−1
⎞
⎠ (107)

≈ − 2g(
ln
(

1
2

√
σ
g3

)
+ ψ(1/2)

)2
+ π2

4

(
ln

(
1

2

√
σ

g3

)
+ ψ(1/2) − iπ

2

)
. (108)

Therefore we obtain the approximate IDoS,

N(0) � g

[ln
√

g3/σ + ln 2 − ψ(1/2)]2 + π2/4
. (109)
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Figure 6. IDoS (left) and Lyapunov exponent (right) for g = 1 and μ = 0 for various values of
σ . Delocalization transition at E = 0 for σ = 0 (dashed lines) is suppressed even by a tiny scalar
potential.
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Figure 7. N(E) and γ (E) for μ = 1/4 (top) and μ = 1/2 (bottom). The dashed lines correspond
to the pure supersymmetric results for σ = 0.

We have recovered by the replica method the behavior obtained in sections 2 and 3,

N(E = 0) ∼
σ→0

g

ln2(g3/σ)
and γ (E = 0) ∼

σ→0

g

ln(g3/σ)
. (110)

Note however that the next leading order are different (this is not surprising since the
approximation scheme of section 2 is quite different). Nevertheless, (102)–(104) are less
manageable for the intermediate regimes singled out in the previous sections.

Figure 6 illustrates N(E) and γ (E) for the Sinai case (μ = 0, g = 1). Any Gaussian
noise with σ > 0 lifts the singular behavior Nsusy(E) ∼ 1/(ln E)2 and γsusy(E) ∼ 1/| ln E| to
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analyticity in the vicinity of E = 0. In particular, as shown in figure 6, any small σ shifts the
singularity of γ (E) to some minimum at some Emin > 0.

The case μ �= 0. It is also interesting to consider the case of finite 〈φ〉 = μg. In the absence
of the scalar noise V (x) (σ = 0) the power-law Dyson singularity of the IDoS is transformed
into a power-law behavior N(E) ∼ Eμ. If a tiny scalar noise is introduced a fraction of states
migrates to R

−,

N(E = 0) �
σ→0

g

π

[
�
(

μ+1
2

)
�(μ)

]2 (
σ

4g3

) μ

2

, (111)

which we find by straightforward application of (106)–(104). Moreover, the feature of
smoothing singular behavior extends to 0 < μ < 1/2. For σ = 0 we have the non-analytic
behavior γsusy(E) ∼ μg +C±|E|μ with some constants C± for E > 0 and E < 0 respectively.
Again, the introduction of σ shifts this power-law singularity to some minimum of γ (E) at
small positive Emin, as illustrated on figure 7. In either case, the evaluation of Emin seems to
be difficult. However, it would be interesting to find a physical argument for this mechanism.

5. Conclusion

In this paper, we have studied the spectral and localization properties of a one-dimensional
random Hamiltonian H = − d2

dx2 + φ(x)2 + φ′(x) + V (x) = Hsusy + V (x) which interpolates
between the well-studied examples of random supersymmetric models Hsusy and Halperin’s
model Hscalar. Our analysis has pointed out a natural competition between the fluctuations
of φ(x) and V (x). We have identified the important scales that control this competition for
g3 � σ or g3 � σ , which are the two largest scales among σ/g, σ 2/3,

√
gσ and g2. We

have observed that even a small additional scalar noise V (x) lifts the singular spectral and
localization properties of Hsusy: the Dyson singularity of the IDoS and the vanishing of the
Lyapunov exponent at E = 0 are replaced by smooth behaviors: a small additional scalar
white noise (σ → 0) leads to a migration of a fraction N(0) ∼ g/ln2(g3/σ) of eigenstates to
negative values. It is worth noting that, ∀μ, the zero energy IDoS (110), (111) for g3 � σ

can be obtained by the substitution E → √
gσ in the known expressions for σ = 0,

N(σ �=0)(E = 0) ∼ N(σ=0)(E ∼ √
gσ). (112)

This is a simple consequence of the correct identification of the crossover energy scales.
Simultaneously to the smoothing of the Dyson singularity, the delocalization transition of

Hsusy at E = 0 disappears and the Lyapunov exponent takes a finite value γ (0) ∼ g/ln(g3/σ).
This logarithmic behavior shows that, in practice (see figure 6), even a tiny Gaussian noise σ

kills the singularity of the Lyapunov that becomes almost flat γ (E) ∼ g for all energies for
which density of states is significant.

IDoS and Lyapunov exponent have also been studied in the other regimes. In particular,
how the fraction N(0) ∼ g/ln2(g3/σ) of states are distributed among negative energies
has been further analyzed; the precise (Lifshits) exponential tail of the IDoS has been
derived in the various regimes. It is worth emphasizing that in the lowest part of the
spectrum, the tail involves a competition between the supersymmetric and the scalar noise,
N(E → −∞) ∼ exp

(− π√
gσ

|E|), whatever is the largest scale among g3 (supersymmetric
noise) and σ (scalar noise).

The study of spectral properties has been completed by considering the individual
distributions of eigenenergies (extreme value problem). We have shown that these distributions
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coincide with Gumbel laws, a consequence of the absence of spectral correlations due to the
strong localization of the wavefunctions [48], like for the scalar potential alone; this can be
opposed to the purely supersymmetric case (σ = 0) for which distributions of eigenenergies
are strongly modified in the neighborhood of the delocalization transition [33].

The study of individual distributions of eigenenergies, that includes properly finite size
(Dirichlet boundary) effects, had allowed us to identify the critical value σc of the scalar
noise σ below which, for fixed g and L � 1/g, the scalar noise can be ignored. We have
obtained σc ∼ g3 e−√

gL. It is worth noting that the corresponding value of the E = 0
Lyapunov exponent (roughly its minimum value) then reads γ (0) ∼ g/ln(g3/σc) ∼ √

g/L.
This corresponds to a maximum localization length �loc ∼ √

L/g � L.
It is not too surprising that the additional white noise modifies spectral and localization

properties in the vicinity of the band center (around E = 0). However, it is somewhat
unexpected that, at any value of g (even in the limit g → 0+), the noise φ(x) from the
supersymmetric part controls the spectral properties for E → −∞, which we have seen on
the tail N(E) ∼ exp

(− π√
gσ

|E|) and the distributions of the lowest energy levels. This feature
seems counter-intuitive since the pure SUSY spectrum is strictly positive so that we would
have expected the potential V (x) to yield the behavior N(E) ∼ exp

(− 8
3σ

|E|3/2
)
. We attribute

this behavior to the singular nature of the supersymmetric potential φ(x)2 + φ′(x) which is
also responsible for the saturation of the Lyapunov exponent at high energies γ (E) � g/2
for E → +∞. Part of this picture will change if supersymmetric noise is replaced by a more
regular process with regular correlation function of finite width and height (see [34]).

Diffusion in a random force field with random annihilation/creation rates. Finally, it is
interesting to come back to the analysis of the results in the context of classical diffusion in
a random force field with random annihilation/creation rates. In order to distinguish more
clearly the roles of the force field φ(x) and the annihilation/creation rates V (x), we consider
several situations and analyze the density of particles 〈n(x, t |x, 0)〉 at x at time t, when a
particle has been released at x initially. Averaging is taken over the random force field and the
random annihilation/creation rates.

• For g = 0 and σ = 0: it is useful to recall the obvious fact that in the absence of random
force field and absorption we have n(x, t |x, 0) = 1√

4πt
.

• For g �= 0 and σ = 0: classical diffusion in a random force field (Sinai problem). Thanks
to (9), the spectral Dyson singularity N(E) ∼ 1/ln2 E can be connected to large time
behavior [15]

〈n(x, t |x, 0)〉 ∼
t→∞

1

ln2 t
(113)

much slower than the 1/
√

t . This behavior is related to the behavior x(t) ∼ ln2 t

of the typical distance covered by the random walker [15] (see also [18] where many
interesting properties of the Sinai problem were studied thanks to the powerful real space
renormalization group method of Ma and Dasgupta).

• For g = 0 and σ �= 0: in order to examine the effect of the annihilation/creation rates
that were chosen to be zero on average, we first switch off the random force field. Of
course the number of particles is not conserved for σ �= 0. In this case, the spectral
Lifshits singularity of the DoS is ρ(E) � 1

2π
√|E| exp − 8|E|3/2

3σ
. The Laplace transform (9)

is dominated by negative energy contributions. A steepest descent estimation shows that
the averaged number of returning particles diverges with time as

〈n(x, t |x, 0)〉 �
t→∞

1√
πt

e+ σ2

48 t3
. (114)
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We emphasize that this increase of the averaged density cannot be compensated by a finite
mean value of the annihilation rates 〈V 〉 > 0 that would only add a e−〈V 〉t to this result.

• For g �= 0 and σ �= 0: finally, we consider the case of a random force field with random
annihilation/creation rates. The form taken by the Lifshits singularity ρ(E) ∼ exp −π |E|√

σg

leads to the surprising conclusion that the average number of returning particles diverges
at a finite time tc = π/

√
gσ ,

〈n(x, t |x, 0)〉 = ∞ for t � tc. (115)

The two previous points show that this divergence of the average particle density is due to
the interplay between the random force field and the random annihilation/creation rates. It
would be an interesting issue to understand precisely the physical origin of this remark. On
the other hand, these last remarks might indicate that the white noise V (x) is probably too
widely fluctuating for a reasonable description of a realistic random annihilating/creating
rates. Maybe a more interesting model would be to add a low concentration of such sites. In
the continuum limit this would correspond to add to the supersymmetric Hamiltonian a scalar
potential of the form V (x) = ∑

n αnδ(x − xn), where xn are random positions with a density
ρ and αn local annihilation/creation rates. The limit of high density ρ � |αn| corresponds to
the white noise limit studied in the present paper. The limit of low density ρ � |αn| might
be more interesting. This model has been recently studied in the absence of the random force
field and for absorbing sites (αn > 0) in [60], where a penetration length was derived in any
dimension thanks to renormalization group methods. An interesting question would be to
understand the effect of the random force field on these known properties.
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Appendix A. The case of correlated noises

It is possible to extent the analysis to correlated noises in the following sense. Suppose that
V (x) = √

ση(x) and φ(x) = μg +
√

gη̃(x) are correlated such that

〈V (x)φ(y)〉 = �δ(x − y). (A.1)

We introduce variables ζ(x) = φ(x) − A and v(x) = 2A(φ(x) − μg) + V (x) so that the
Hamiltonian may be rewritten as

H = − d2

dx2
+ ζ(x)2 + ζ ′(x) + v(x) + 2μgA − A2. (A.2)

The new variables have the correlation function

〈ζ(x)v(y)〉 = (2gA + �)δ(x − y), (A.3)

so that the choice A = −�/2g makes them independent. Further characteristics are given by

〈v(x)〉 = 0, 〈v(x)v(y)〉 = σδ(x − y)

〈ζ(x)〉 = μg +
�

2g
, 〈ζ̂ (x)ζ̂ (y)〉 = gδ(x − y),

(A.4)

where ζ̂ (x) = ζ(x)−μg −�/2g. Thus, up to a re-definition of energy ε = E +μ� +�2/4g2,
we recover the problem of uncorrelated noises.
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Appendix B. A useful relation

Let us consider a random process generated by uncorrelated Wiener processes dWi(t),

dx(t) = a(x) dt + bi(x) dWi(t)
(law)= a(x) dt +

√
bi(x)bi(x) dW(t) . (B.1)

The equality is valid for Ito and Stratonovich prescriptions. Let us demonstrate this relation.

Ito’s prescription. Recall that the SDE

dxi = ai(x) dt + bij (x) dWj(t) (Ito) (B.2)

is associated with a FPE ∂tP = FxP where the Forward Fokker–Planck generator is [38]

Fx = −∂iai + 1
2∂i∂jbikbjk. (B.3)

Therefore dxi = a(x) dt +bj (x) dWj is associated with a FPE with generator Fx = −∂xa(x)+
1
2∂2

x bj (x)bj (x) that is also associated with the SDE dx = a(x) dt +
√

bi(x)bi(x) dW(t).

Stratonovich’s prescription. The relation between Ito and Stratonovich prescriptions is given
in [38]

dx = α(x) dt + βj (x) dWj(t) (Stratonovich) (B.4)

= [
α + 1

2βjβ
′
j

]
dt + βj dWj(t) (Ito) (B.5)

(law)= [
α + 1

2βjβ
′
j

]
dt +

√
βjβj dW(t) (Ito) (B.6)

= [
α + 1

2βjβ
′
j − 1

2

√
βjβj (

√
βjβj )

′]dt +
√

βjβj dW(t) (Stratonovich) (B.7)

= α(x) dt +
√

βj (x)βj (x) dW(t) (Stratonovich). (B.8)

This shows that addition law of variances holds not only for additive processes but also for
multiplicative processes.

Appendix C. A remark on the Lyapunov exponent

In this appendix, we clarify some relations between different formulae for the Lyapunov
exponent given above.

Let us present the problem with the well-known Halperin model Hscalar = − d2

dx2 + V (x).
Here V (x) denotes a white-noise potential with average 〈V (x)〉 = 0, and 〈V (x)V (y)〉 =
σδ(x − y). The widely-used Ricatti mapping allows us to relate the spectral statistics for
Hscalar to passage probabilities for a diffusion z(x) whose evolution is governed by the SDE
z′(x) = −[E + z(x)2] + V (x). In particular, the stationary distribution T (z) for z is solution
to the differential equation,

σ

2
T ′(z) + (z2 + E)T (z) = N(E), (C.1)

where N(E) denotes the integrated density of states for Hscalar as it can be shown from the
node-counting theorem. Moreover, the Lyapunov exponent relates to the diffusion via Rice
formula γ = 〈z〉 which, however, must be understood as the principal value

γ = lim
R→+∞

∫ R

−R

dz zT (z) (C.2)
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in order to avoid difficulties from the asymptotic behavior T (z) ∼ N(E)/z2 as |z| → +∞.
For E > 0 (C.1) allows us to rewrite

γ = lim
R→∞

∫ R

−R

dz z

(
N(E)

z2 + E
− σ

2(z2 + E)
T ′(z)

)
. (C.3)

Clearly, the first term yields 0. Note that it is crucial to let the integration bounds tend to 0
symmetrically, otherwise we would not find a well-defined result. After partial integration of
the second term, we eventually find an alternative expression for the Lyapunov exponent

γ (E > 0) = −σ

2

∫ +∞

−∞
dz

z2 − E

(z2 + E)2
T (z). = −σ

2

〈
z2 − E

(z2 + E)2

〉
. (C.4)

The integration does not require anymore the principal value: it was possible to let the cutoff
R go to infinity since integrand now vanishes sufficiently fast thanks to the partial integration.

This relation is particularly useful in order to study the limit E → ∞ since we may
immediately read of the asymptotic behavior γ ∝ σ/E. However the drawback is that (C.4)
is rather ill-defined for E � 0. Nevertheless, writing

T (z) = N(E)

z2 − E
− 2ET (z)

z2 − E
− σT ′(z)

2(z2 − E)
, (C.5)

it is not difficult to show that

γ (E < 0) = −
〈

2Ez

z2 − E

〉
− σ

2

〈
z2 + E

(z2 − E)2

〉
(C.6)

by partial integration. In order to extract the asymptotics, recall that as E → −∞ the
distribution T (z) is centered at z ∼ √−E. Using this scaling behavior we recover the
asymptotic behavior γ ∝ √−E. It remains that the E → 0 limit in the two relations (C.4),
(C.6) seems tricky.

Let us now turn to our model Hamiltonian H = − d2

dx2 + φ(x)2 + φ′(x) + V (x).
Section 2.1 provides a detailed account on the Ricatti mapping in this case, in particular the
stationary distribution T (z) of the variable z(x) was shown to be a solution of the differential
equation N(E) = (z2 + E + 2gz)T (z) + (σ + 4gz2)T ′(z)/2, see (12). For E > 0 we may
rewrite

T (z) = N(E)

z2 + E
− 2gzT (z)

z2 + E
− (σ + 4gz2)T ′(z)

2(z2 + E)
(C.7)

and insert this expression into (C.2) what indeed allows us to recover (78),

γ (E > 0) = σ

2

〈
E +

( 8Eg

σ
− 1

)
z2

(E + z2)2

〉
. (C.8)

Conversely, for E < 0 we may follow the same strategy as for Halperin’s model what yields
an additional term

γ (E < 0) = −
〈

2Ez

z2 − E

〉
− σ

2

〈
E +

( 8Eg

σ
+ 1

)
z2

(z2 − E)2

〉
. (C.9)

Again, the advantage of these formulae is that they provide the asymptotic behavior of γ as
E → ±∞ in a very explicit way. For example, as E → +∞ (C.8) shows that γ ∝ σ/E + 4g

what is coherent with γ ∼ γsusy + γscalar.
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Appendix D. Solution of the differential equation T Ψ0 = 0

The differential equation for �0 is given by(
− ∂2

∂ξ 2
− E

g2
− σ

4g3
(ξ 2 − 1) +

μ2 − 1/4

ξ 2

)
�0(ξ) = 0. (D.1)

In the absence of diagonal Gaussian disorder σ = 0 we recover the solution given in [15].
For σ > 0, we convert the preceding equation into a differential equation for confluent
hypergeometric functions. Indeed, the ansatz

�0(ξ) = exp(λξ 2/2)ξαw(z) with z = ηξ 2/2, (D.2)

where α = 1/2 ± μ, η = −2λ = ±i
√

σ/g3 leads to

w′′(z) + (b − z)w′(z) − aw(z) = 0 with b = 1

2
+ α, a = b

2
− 1

2η

(
E

g2
− σ

4g3

)
.

(D.3)

The choice α = 1/2 + μ, η = −2λ = +i
√

σ/g3 leads to a square integrable solution

�0(ξ) = exp

(
− i

4

√
σ

g3
ξ 2

)
ξμ+1/2U

(
μ + 1

2
+

i

2

(
E√
gσ

− 1

4

√
σ

g3

)
, μ + 1, i

√
σ

4g3
ξ 2

)
.

(D.4)

In order to see square integrability, recall that E has a small negative imaginary part −iε.
Using U(a, b; z) ∼

z→∞ z−a + · · · we find |�(ξ)|2 ∼
ξ→∞

ξ−1−ε . A second, linearly independent

solution is readily found from the complex conjugation of (D.4). The Wronskian which turns
out to be useful for the determination of the integrated density of states may be obtained from
known properties of U(a, b, z),

W(�0(ξ),�0(ξ)) = 2i exp(π Im a)

(
4g3

σ

)μ/2

ξ 1/2−μ exp

(
i

4

√
σ

g3
ξ 2

)
. (D.5)
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